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Motion of a fluid interface in Richtmyer-Meshkov instability is examined as a vortex sheet with the use of
Birkhoff-Rott equation. This equation coupled with an evolution equation of the strength of the vortex sheet
can describe all inviscid and incompressible fluid instabilities, i.e., Kelvin-Helmholtz, Rayleigh-Taylor, and
Richtmyer-Meshkov instabilities, when Atwood numbers and initial distribution of vorticities are given. With
these equations, detailed motion of a vortex core in the Richtmyer-Meshkov instability is investigated. For the
Kelvin-Helmholtz and Rayleigh-Taylor instabilities, it is known that the curvature of a vortex sheet diverges at
a finite time t= tc. This fact indicates that the solution loses its analyticity at tc. We show that the singularity
formation also occurs in the Richtmyer-Meshkov instability and at the same time, accumulation of vorticity to
some points where singularities are formed develops to the roll-up of a sheet when the sheet is regularized. We
investigate motion of these accumulation points, i.e., vortex cores, and present that their trajectories and the
strengths depend on the Atwood numbers.
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I. INTRODUCTION

When a planar shock wave collides with a corrugated in-
terface between two different fluids, a perturbed shock wave
is transmitted and either a perturbed shock wave or a per-
turbed centered rarefaction wave is reflected. The perturbed
wave fronts propagate the initial disturbance into the bulk of
the fluids. As the shock �or rarefaction� fronts separate away,
the perturbed interface begins to grow �1–5�. If the initial
corrugation is very small compared with the perturbation
wavelength, an asymptotic velocity is achieved when the
fronts are sufficiently far from the initial contact discontinu-
ity. This phenomenon, known as Richtmyer-Meshkov �RM�
instability, is important in astrophysics, inertial confinement
fusion, and supersonic combustion.

Refraction of flow across the perturbed wave fronts de-
posits localized nonuniform vorticity at the interface, which
drives the RM instability �6–8�. The two distinct contribu-
tions to the linear asymptotic growth rate are separated in the
following exact formula:

vlin =
�1

*�v1
* − �2

*�v2
*

�1
* + �2

* −
�1

*Fs1
* − �2

*Fs2
*

�1
* + �2

* � v0 + �vs, �1�

driven by Wouchuk and Nishihara �WN� �6�. Here �1,2
* and

�v1,2
* are densities and transverse velocities immediately after

the shock-interface interaction, suffixes 1 and 2 denote two
different fluids, where the incident shock propagates through
from fluid 1 to fluid 2, and Fs1,2 are parameters accounting
the amount of vorticity left by the fronts in the bulk of the
fluids. The first term is due to the instantaneous deposition of
the localized vorticity at the interface just after the shock-
interface interaction. The second term is determined from the
sonic interaction between the interface and the fronts �7�.

The WN formula of the asymptotic linear growth is valid
for any value of the initial parameters, incident shock Mach
number, fluid density ratio, and compressibility. Reference
�6� also showed that the pressure and density perturbations
between the fronts vanish when the fronts are sufficiently far
away, independent of the incident shock strength. This means
that the perturbed velocity field asymptotically becomes in-
compressible. Therefore, we have an asymptotic velocity
shear of vlin− �−vlin� across the interface within the linear
theory. It should be noted that the vorticity deposited at the
interface is proportional to the product of the wave number
and the preshocked corrugation amplitude for a single-mode
sinusoidal corrugation in the small amplitude theory �6�.

As discussed by Velikovich et al. �8�, a large family of
so-called RM-like interface instabilities exists, which is
driven by the same physical mechanisms as the classical RM
instability, namely by the nonuniform vorticity, either ini-
tially deposited at the interface or supplied from external
sources. For instance, in the experiments reported by Jacobs
et al. �9�, the sinusoidal vorticity at an interface with a stand-
ing wave form separating two immiscible fluids contained in
a tank grows due to the “virtual gravity” when the tank is in
contact with a coil spring for a brief interval of time, but
finite time �10�. In the linear theory, the vorticity deposited at
the interface is also proportional to the product of the wave
number and the preaccelerated corrugation amplitude �6,10�.
The main features of the RM and RM-like instabilities at the
linear regime are firmly established.

However, analytical treatments are still limited to such as
a weakly nonlinear analysis performed in Refs. �11,12� only
giving a short time behavior of the interface evolution, and a
local expansion of Layzer type �13–16� or a nonlocal expan-
sion theory with a multiharmonic analysis �17� only giving
an asymptotic behavior of a bubble. Therefore, we need an-
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other approach so as to describe throughout the interface
dynamics from the linear regime to a fully nonlinear stage.

In the fully nonlinear stage of the RM instability, the spike
rolls up to a spiral, as observed in Ref. �9�, due to the non-
uniform vorticity distributed at the interface initially. This
work aims at presenting a long-time behavior of the interface
dynamics, especially such as vortex core dynamics, that de-
termines the spiral structure of the RM spike observed in
Ref. �9�, singularity formations at the interface and their de-
pendence on the density ratio, in the two-dimensional incom-
pressible RM instability by treating the interface as a vortex
sheet. We distribute the initial vorticity at the interface given
by the asymptotic linear theory for a single-mode sine cor-
rugation. It should be mentioned that the asymptotic velocity
is consistent with the previous compressible evolution of the
perturbation within the linear theory. As will be introduced
below, we use a normalized time as kvlint, where k is the
wave number of the single mode. Therefore real time can be
calculated from the knowledge of such as incident shock
Mach number and fluid density ratio.

In order to investigate the vortex sheet motion stated
above, we use the Birkhoff-Rott equation. The Birkhoff-Rott
equation is known as an integro-differential equation that
describes a vortex sheet motion in an inviscid and incom-
pressible fluid �18–20�. It is usually used for calculations of
a vortex sheet motion in a homogeneous fluid, where the
circulation of a system is conserved according to Kelvin’s
theorem. The Birkhoff-Rott equation can be applied to an
inhomogeneous fluid system with two different fluid densi-
ties, which we will consider here, providing an evolution
equation of the circulation or strength of a vortex sheet. In
the present work we examine an interface motion in the RM
instability using the Birkhoff-Rott equation coupled with an
evolution equation of the vortex strength at the sheet, which
was first derived by Baker et al. �21� from the Bernoulli
equation. The coupled equations describe all inviscid and
incompressible instabilities of a fluid interface such as the
Kelvin-Helmholtz �KH�, Rayleigh-Taylor �RT�, and RM in-
stabilities. In this paper we classify these instabilities by the
initial distribution of the vorticity and the linear growth rate
as follows:

�i� There exists a uniform shear flow initially between
two fluids in the KH instability, in which a linear mode
grows exponentially and the exponent is proportional to the
wave number k.

�ii� There exists no shear flow initially between two fluids
in the RT instability, in which a linear mode grows exponen-
tially and the exponent is proportional to �k.

�iii� There exists a nonuniform shear flow between two
fluids in the RM instability, in which a linear mode grows
proportional to time t, i.e., kt.

When we calculate the Birkhoff-Rott equation numeri-
cally, two methods are adopted in this study. One is the vor-
tex method and the other is a quadrature method presented
by Sidi and Israeli �22� for solving periodic singular integral
equations of Fredholm type. It is mathematically proven that
initial value problems to the Birkhoff-Rott equation are ill-
posed in a certain nonanalytic function space and the solu-
tion loses its smoothness at a finite time �24�, which indicates
that the roll-up of a vortex sheet does not arise in the limit

that the system is inviscid and incompressible and the thick-
ness of a vortex sheet is zero. However, a vortex sheet rolls
up smoothly in real systems due to the existence of viscosity
or finite thickness of the sheet. The vortex method is a
method which regularizes the Cauchy integral of the
Birkhoff-Rott equation with a small parameter � introduced
by Krasny �23�. This is an artificial parameter in order to
calculate motion of a vortex sheet numerically for a long
time. When ��0, governing equations are not identical to
the Euler equations. Here, we use this method in order to
calculate the roll-up of an interface. The other method, the
quadrature method presented by Sidi and Israeli �22� makes
it possible to calculate the Cauchy integral with the exponen-
tial accuracy even if the regularized parameter �=0. By us-
ing the quadrature method for calculating Fourier amplitudes
of the interface perturbation, we will examine whether the
formation of the curvature singularity �26,27� occurs or not
in the RM instability.

Some studies with the use of the Birkoff-Rott equation are
known for the RT and RM instabilities. Baker et al. �28�
investigated the singularity formation in the limit of �=0 in
the RT instability and presented a theoretical prediction that
the singularity formation can occur in the RT instability ex-
cluding the case for A=1. Tanveer �34� also obtained the
same results as Baker et al. independently with another ap-
proach. These studies for the singularity formations con-
cerned whether or not the solution loses its analyticity in a
finite time as found in the KH instability.

The formation of the curvature singularity has been be-
lieved to precede the roll-up of the vortex sheet when ��0.
The calculations by Kerr �29� for ��0 guarantee this pre-
diction. Kerr succeeded in long-time computations for the
RT instability and showed roll-ups of the interface in the RT
instability for various density ratios by using the semi-
Lagrangian scheme with the second order Runge-Kutta
method for the temporal integration. Kerr also investigated
the asymptotic velocities of a bubble and spike in the RT
instability and showed that they depend on the density ratio
and are independent of the size of the regularized parameter
�. Kotelnikov et al. �30� reproduced a multimode profile in
addition to a single mode perturbation in the RM instability
experimentally observed by Jacobs et al. �31�. Sohn �32�
applied the Godunov method to compute a nonlinear term in
the evolution equation of the sheet strength and succeeded in
long-time computations for both the RT and RM instabilities.

In this paper we perform more accurate computations than
those described above and show the singularity formation in
the RM instability in addition to the investigation of vortex
core dynamics. We adapted other methods �25� besides the
vortex method to study the roll-up of the vortex sheets. For
those and their validness, refer to Ref. �25�. In Sec. II, we
present kinematical and dynamical equations used for our
numerical calculations. In Sec. III, detailed motion of a spiral
core at which the strength of a vortex sheet becomes maxi-
mum in its absolute value is studied. In Sec. IV, we show the
singularity formation in the RM instability, and in Sec V the
counterparts in the RT instability are reviewed. Section VI
gives conclusions and discussions.
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II. GOVERNING EQUATIONS

We consider two incompressible fluids with different den-
sities �1 and �2. The Bernoulli equation, i.e., the pressure
continuous condition at the interface in this system is given
by �21�

d�

dt
= − 2A

d�

dt
+ Aq · q −

A − 2�

4
� · � + �A� · q , �2�

where A= ��2−�1� / ��1+�2� is the Atwood number, q= �u1

+u2� /2 is an average of the velocities on two sides with the
velocity ui �i=1,2� in each side, �=�2−�1 is the circulation,
�i �i=1,2� is the velocity potential in each side, �= ��1

+�2� /2 is the average velocity potential related with ui

=��i and �=u2−u1 is the velocity difference between the
boundary.

The system is supposed to be incompressible, therefore,
the velocity potential satisfies the Laplace equation ��i=0
�i=1,2� in each region. The differentiation d/dt in Eq. �2�
following a fluid particle on the interface with the velocity ū
is defined to be

d

dt
=

�

�t
+ ū · �, ū � q +

��

2
,

where ���	1 is a weighting factor such that ��0 when the
Atwood number A�0 �21�. Any values of the factor � sat-
isfy the continuity condition of the normal velocity at the
interface, however, we must carefully choose it when we
perform numerical computations, in which smaller � enables
us to calculate for a long time �33�. In computations for the
roll-ups, �=−�A�2 is chosen for small Atwood numbers,
while other values are taken for larger Atwood numbers fol-
lowing studies by Kerr �29�. When we examine singularity
formations, we choose �=−A such that we can compare the
theoretical work by Baker et al. �28�. It should also be noted
that in the case of �=−A, the velocity ū corresponds to the
mass averaged interface velocity as used in our previous
weakly nonlinear theory �12�.

We consider an interface in the RM instability as a vortex
sheet and suppose that the vortex sheet is described by
�x�t� ,y�t��, where x=X�
 , t� and y=Y�
 , t�, and 
 is a La-

grangian parameter which parametrizes the interface. Here,
the system is assumed to be periodic in the x direction. The
vortex strength ��
 , t� is related to the circulation ��
 , t�
through the relation �=�� /�s=�
 /s
, where the subscript
denotes the differentiation with respect to the variable and s
is arc length of the sheet. The vortex strength � is also re-
lated with the velocity difference � as �t=�, where t
= �X
 ,Y
� /�X


2+Y

2 is a unit tangential vector of the interface.

Then the Birkhoff-Rott equation that describes the motion of
the vortex sheet in this system is given here as

�Z*�
,t�
�t

=
1

2�i
PV� ��
�,t�s
�
��d
�

Z�
,t� − Z��
,t�
+

���
,t�Z

*�
,t�

2s
�
�
,

�3�

where the integral is Cauchy’s principal value integral,
Z�
 , t�=x+ iy, and Z* is the complex conjugate of Z. This
equation corresponds to the kinematic boundary condition in
the system, and it describes the temporal evolution of the
interface coupled with Eq. �2�. Assuming the periodicity of
the vortex sheet and separating the real and the imaginary
parts in Eq. �3�, we obtain

Xt = U +
�X


2s


� , Yt = V +
�Y


2s


� , �4�

where U=U�
 , t� and V=V�
 , t� are given as

U�
,t� = −
1

4�
�

−�

� sinh„Y�
,t� − Y�
�,t�…��
�,t�s
�
��d
�

cosh„Y�
,t� − Y�
�,t�… − cos„X�
,t� − X�
�,t�… + �2 ,

V�
,t� =
1

4�
�

−�

� sin„X�
,t� − X�
�,t�…��
�,t�s
�
��d
�

cosh„Y�
,t� − Y�
�,t�… − cos„X�
,t� − X�
�,t�… + �2 . �5�

We used here Krasny’s � �23� in order to regularize the
singular integral in Eq. �3�. These regularized equations �5�
converge uniformly to the Birkhoff-Rott equation as �→0,

as long as the solution is smooth �35�. We set �=0 in Secs.
IV and V B for calculating the singularity formation. For the
validity of Krasny’s �, refer to Refs. �36–38�. Differentiating

TABLE I. Simulation parameters; left, regularized vortex sheet
���0� and right, nonregularized vortex sheet ��=0�.

Regularized sheet
�Secs. III and V A�

Nonregularized sheet
�Secs. IV and V B�

N 512 1024

� 0.15 �except Fig. 2� 0

� −�A�2 �A=0.155� ,
−0.05 �others�

−A

a0 0.2 0.2

Fourier filter levels 10−13 10−11

Tolerance levels 10−8 10−13

Grid redistribution used �except A=0� Not used
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Eq. �2� with respect to 
 gives the following Fredholm inte-
gral equation of the second kind:

�t = −
2A

s


�X
Ut + Y
Vt� −
�1 − �A��

s

2 �X
U
 + Y
V
�

−
A − �

4s


��2�
. �6�

By solving Eq. �4� coupled with Eq. �6�, we can determine
the temporal evolution of an interface as a vortex sheet in the
RM instability.

Details of the numerical methods to solve Eqs. �4� and �6�
are presented in the Appendix. For the temporal integration,
we use the fourth-order Runge-Kutta scheme throughout this
paper. The Fredholm equation of the second kind, Eq. �6� is
solved by iteration until convergence within some tolerances
�see Table I�. In order to cut the irregular motion due to the

round-off error that increases with the number of vortex
points N, we use the filtering technique introduced by Krasny
�41�. The filter level depends on the spatial resolution, i.e.,
the number of grid points N and in general, the higher filter
levels are demanded for the larger N. Details for numerical
parameters presented in the following sections are summa-
rized in Table I.

III. MOTION OF A SPIRAL CORE IN RICHTMYER-
MESHKOV INSTABILITY

In this and the next sections for the RM instability, we
normalize X→kX , Y →kY , 
→k
 �−�	
	�� and time t
→kvlint, where k is the wave number and vlin is the linear
growth rate in the system that is also related to the initial
amplitude of the velocity potential ��1�0��= ��2�0��=vlin /k
�12�. The initial amplitude of the sheet strength ��
 ,0� is

FIG. 1. Interfacial profiles in the RM instability for A=0.155 at dimensionless time t= �a� 2.0, �b� 4.3, �c� 6.2, �d� 7.2, �e� 8.6, and �f� 9.4,
where the initial configuration is given by Eq. �7�.
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also normalized by vlin through the relations �=�2−�1 and
�� /�s.

We set here initial configurations of the interfacial profile
Z�
 ,0� and the sheet strength ��
 ,0� as

Z�
,0� = 
 + ia0 cos 
 , ��
,0� = − 2 sin 
/s
�0� , �7�

where the dimensionless initial amplitude a0 is set to a0
=0.2. Roughly speaking, this normalized amplitude corre-
sponds to the amplitude when the tank was separated from
the coil spring in Jacobs’s experiment �9�, which is 0.3 cm in
real scale �10�. We can also estimate k=0.81 cm−1 and kvlin
=15.8 s−1 in the linear theory �10�, which leads to that nor-
malized time t=1 corresponds to real time 63.3 ms.

Figure 1 shows the temporal evolution of an interface for
A=0.155 over normalized time 0	 t	9.4, which approxi-
mately corresponds to 0	 t	595 ms in real time t. The time
step in the computation is taken as �t=0.002 over 0	 t	6
and �t=0.001 over 6 t	9.4, where the grid redistribution
is started from t=3, and it is performed up to the end of
computation every four time steps. The interval of normal-
ized time t roughly coincides with the time duration from the
beginning to the end of the experiment in Fig. 4 in Ref. �9�,
and the profiles �a�, �b�, �c�, �d�, �e� and �f� in Fig. 1 corre-
spond to the video images �c�, �e�, �g�, �h�, �i�, and �j� in Fig.
4 in Ref. �9� respectively.

The single-valuedness of the interface shape breaks be-
tween �a� and �b� in Fig. 1, where the sheet strength of a core
rapidly increases �see Fig. 7�. The detailed profiles including
the magnitude of the amplitudes in the fully nonlinear stage
�b�–�f� in Fig. 1 are unchanged even though we take other
initial values, i.e., the temporal evolution of an interface at
the fully nonlinear stage depends only on the Atwood num-
ber A and the smoothing parameter �.

The parameter � plays a part in cutting higher order Fou-
rier modes �42� and generally, the speed of the roll-up slows
down and the breakdown of the computations occurs at later
time for larger values �. We show the effect of � in Fig. 2.
This tendency that the curve at a fixed time t has more turns
for smaller � is also found in Refs. �29,32�. We choose �
=0.15 in all regularized calculations except Fig. 2 for the
reason that the value agrees well with the experiments by
Jacobs et al. �9�.

Profiles of interfaces with different Atwood numbers A
=0, A=0.5, and A=0.8 at t=7.2 are shown in Fig. 3. The
parameter � is taken as �=−0.05 for A=0.5 and A=0.8. The
results for A=0.5 were unchanged even though we take �
=−0.1, however, the computations for A=0.8 broke down at
an earlier time when �=−0.1. The time steps in the compu-
tations are taken as �t=0.002 over 0	 t	5 and �t=0.001
over 5 t	9.4 for A=0, while �t=0.001 over 0	 t	6 and
�t=0.0002 over 6 t	7.2 for both A=0.5 and A=0.8 in
which the grid redistribution is performed every four and five
time steps in the intervals 0	 t	6 and 6 t	7.2, respec-
tively. When A=0, the bubble and spike velocities are the
same in the magnitude and the clustering as stated in the
Appendix does not occur in the computation. Therefore, the
grid redistribution is not used for this Atwood number. Note
that the time interval 0	 t	7.2 for A=0.5 and A=0.8 does
not indicate identical duration in real time for the two At-

wood numbers, since the linear growth rate vlin generally
depends on the Atwood number. The velocity of a spike be-
comes larger and the roll-up becomes weaker as the Atwood
number increases. The roll-up to the spiral is most tight at the
Atwood number A=0, while the roll-up is not seen for A
�0.9. This tendency is also observed in the RT instability
�29,32�.

The growth rates in different Atwood numbers are shown
in Fig. 4. The bubble velocities gradually approach zero for
all Atwood numbers, while spike velocities decay to some
values which are determined by the Atwood numbers. As we
see from the figure, the growth rate of a bubble is larger for
lower Atwood numbers, while the growth rate of a spike is
larger for higher Atwood numbers, which is also presented
by the weakly nonlinear analysis �12�. This trend for the
growth rate of a bubble differs from that in the RT instability,
in which the growth rate of a bubble is larger for higher

FIG. 2. Interfacial profiles in the RM instability at t=7.2 with
�= �a� 0.1 and �b� 0.2, where A=0.155 for both cases.
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Atwood numbers �29,32� �see also Fig. 13 in Sec. V�.
The strength of vortex sheets for various Atwood numbers

is depicted in Fig. 5. Positions where the absolute value of
the strength � has a maximum value are located at spiral
cores, which are centers of two counter-rotating spirals.
These spiral cores may correspond to “vortex projectiles”
�VPs� presented by Zabusky �43�, which are coherent vortex
structures of positive and negative circulation in two dimen-
sions. Two peaks at around 
= ±1.5 in Fig. 5�a� gradually
approach each other as the Atwood number increases �

= ±1.1 in �b� and 
= ±0.4 in �c��. As the passage of time,
opposite signed sheet strength and same signed secondary
sheet strength with the core strength appear in the neighbor-
hood of the cores. The appearance of these weak opposite
signed and same signed secondary sheet strength which is
not observed when A=0, is also confirmed by direct simula-
tions of the Euler equation �12,44�, in which the strength of
a sheet corresponds to the vorticity induced on the interface.
In Ref. �44� Peng et al. numerically solved the compressible
Euler equation, in which they pointed out that opposite
signed secondary vorticities arise due to baroclinic effect and
the phenomenon is clearer for higher Atwood numbers as
found in our simulations. These secondary vorticities are also
observed in numerical simulations in Ref. �12�. A jump dis-
continuity which appears in the neighborhood of the spike at
A=0.8 �Fig. 5�c�� is sharper as A→1. This jump discontinu-
ity for higher Atwood numbers is also observed in the RT
instability �29,32�.

Figure 6 shows loci of the vortex cores that appear in
�−� ,0� for A=0.155, A=0.5, and A=0.8. Here, the position
of a vortex core is defined as a point where the absolute
value of the strength of a sheet � takes a maximum value
�=�m�
m , t�, where 
=
m is a Lagrangian marker that pro-
vides the maximum value of �, from which we see that a
locus of the core is given by (X�
m , t� ,Y�
m , t�). The loci
started from position �−� /2 ,0� at t=0 extend upward with
�a� complicated and �c� monotonic motion for A=0.155 and
A=0.8, respectively, while a slight zigzag is found at the late

stage in the core motion for A=0.5 �see the interfacial pro-
files in Figs. 1 and 3�.

Temporal evolution of the strength of a vortex core �m,
i.e., the maximum strength of a sheet in −�	
	0 is shown
in Fig. 7. When the Atwood number is relatively low, the

FIG. 4. Velocities of �a� bubbles and �b� spikes in the RM in-
stability, where solid lines, dashed and dotted lines, and dashed
lines depict A=0.155, A=0.5, and A=0.8, respectively and time
intervals are taken as 0	 t	9.4 for A=0.155 and 0	 t	7.2 for
both A=0.5 and A=0.8.

FIG. 3. Interfacial profiles in the RM instability for A= �a� 0, �b� 0.5, and �c� 0.8 at t=7.2.
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maximum strength �m repeats an increase and decrease with
some oscillation in which the complicated motion of a core
is reflected �see Fig. 6�a��. This oscillation gradually disap-
pears as the Atwood number increases and that is not found
when A�0.8 for which motion of a core is monotonous �see
Fig. 6�b��. As stated above, the strength of a core rapidly
grows at the beginning of the roll-up �2 t3 for A=0 and
A=0.155, while 3 t4 for A=0.5�, where the fully nonlin-
ear stage begins. When A=0, the strength of a core increases
with a regular oscillation that is connected with turns of a
sheet. This increase of � reflects the behavior of 1 /s
 in �
=�
 /s
, because �
 is a constant when A=0. As we see from
the figure, the absolute values of the strength of a core in the
RM instability are larger for lower Atwood numbers.

IV. SINGULARITY FORMATIONS IN
RICHTMYER-MESHKOV INSTABILITY

In this section, we investigate singularity formations in
the RM instability. Since the occurrence of singularity for-
mations is predicted in the limit of the interface thickness
zero, we set the regularized parameter �=0 in this section.
We also set the parameter �=−A so that we can compare the
theoretical work by Baker et al. for singularity formations in
the RT instability �see Sec. V B�. On calculations of the in-
tegral equation Eq. �6� including the Cauchy integral in Eq.
�4�, we use the alternate point quadrature method by Sidi and
Israeli �22� stated in the Appendix. The grid redistribution is

not performed here. The time step is set to �t=2.0�10−6

and N=1024 �the mode number M =256, see the Appendix�
throughout this section, and initial configurations are given
by Eq. �7�.

For the KH instability, Moore �26� analytically examined
the solution to the Birkhoff-Rott equation �3� as a function of
the circulation � with initial condition,

Z��,0� = � + i� sin � ,

where ��1 is the initial amplitude of the vortex sheet. As-
suming that

Z��,t� = � + 2i	
m=1

�

Am�t�sin m� , �8�

he obtained the asymptotic expression for Am,

�Am� 
 Cm−5/2 exp�m�1 +
1

2
t +

1

4
log �t� , �9�

where C is a constant that is independent of mode number m.
This power law for the amplitude of the Fourier coefficient is
known as Moore’s −5/2 power law. The analytic solution to
the Birkhoff-Rott equation loses its analyticity at a finite time
t= tc, which satisfies the following relation:

1 +
1

2
tc +

1

4
log �tc = 0.

FIG. 5. Sheet strength � for �a�
A=0.155, �b� A=0.5, and �c� A
=0.8, where dashed and solid
lines in �a� depict t=2.0 and t
=8.6, while dashed and solid lines
in �b� and �c� both depict t=2.8
and t=6.4.
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Then the curvature of the vortex sheet diverges as �x
−xc�−1/2 in the neighborhood of the singular point x=xc, since
the parameter � is proportional to the coordinate x in the KH
instability as found in the parametrization of the vortex sheet
in Z �see Eq. �8��.

The strength of the vortex sheet � has the form

���,t� = 1 −
�3

t
�tc − t + ��tc − t�2 + 4�2�1/2�1/2 + O� 1

tc
 ,

�10�

as t→ tc, therefore, ��tc� has a cuspidal form �x−xc�1/2. These
analytical predictions for the KH instability are supported by
several numerical works �39–41�, however, it is unknown
whether or not analogous singularity formations occur in the
RM instability. In this section, we show that the singularity
formations can also occur in the RM instability.

For the RM instability, we expand

Z�
,t� = 
 + 	
m=−�

�

Ĉm�t�eim
, ��
,t� = 	
m=−�

�

�̂m�t�eim
,

and suppose that there exists some constant � such that the

asymptotic form of the Fourier coefficient Ĉm can be written
as

�Ĉm�t�� � m−�ef�A,m,t� �t � 1� , �11�

where f�A ,m , t� is a function of the Atwood number A, mode
number m, and time t. We define critical time tc in the RM
instability as a time when f�A ,m , tc�=0 in Eq. �11�. Then the
second derivative of Z with respect to the Lagrangian vari-
able 
, which determines the curvature of a vortex sheet,
diverges for some � such that 2−�0. Note that the critical

FIG. 6. Loci of a vortex core
(X�
m , t� ,Y�
m , t�) in −�	
	0
for �a� A=0.155 over 0	 t	9.4,
�b� A=0.5 over 0	 t	7.2 and �c�
A=0.8 over 0	 t	7.2, where all
arrows point to final positions in
the loci.

FIG. 7. Temporal evolutions of core strength �m in the RM
instability, where dotted, solid, dashed, and dotted-dashed lines de-
pict A=0, A=0.155, A=0.5, and A=0.8, respectively, in which
time intervals are taken that 0	 t	9.4 for A=0 and A=0.155,
while 0	 t	7.2 for A=0.5 and A=0.8. As the secondary vorticity
becomes larger �A=0.155� and �A=0.5�, the maximum strength �m

turns to decrease �see also Fig. 5 and Fig. 14�.
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FIG. 8. Log-log plots of the Fourier coefficients for �a� A=0.155 at time t=4.00�10−3 ,4.10�10−3 ,4.20�10−3 ,4.30�10−3 ,4.40
�10−3 ,4.49�10−3, �b� A=0.5 at t=3.70�10−3 ,3.80�10−3 ,3.90�10−3 ,4.00�10−3 ,4.14�10−3 ,4.20�10−3, and �c� A=1.0 at t=3.20
�10−3 ,3.30�10−3 ,3.40�10−3 ,3.50�10−3 ,3.56�10−3 ,3.62�10−3. The slope of the dashed line is −5/2, the value obtained by Moore for
the KH instability.

FIG. 9. Interfacial profiles and the curvatures for A=0.155 at t=4.40�10−3 ��a� and �b�� and t=4.49�10−3 ��c� and �d��.
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time tc generally depends on the Atwood number A for the
RM instability. Under these assumptions, we detect the ex-
ponent � numerically.

Figure 8 shows amplitudes of the Fourier coefficients

�Ĉm�t�� versus mode number, where dashed lines in the figure
have slope −5/2, i.e., the value predicted by Moore for the
KH instability. The spectra approach to −5/2 lines as time t
approaches the critical time tc, where tc=4.49�10−3 , tc
=4.20�10−3, and tc=3.62�10−3 for A=0.155, A=0.5, and
for A=1.0, respectively.

Interfacial profiles and curvatures for A=0.155 at t
=4.40�10−3 and t=4.49�10−3 are shown in Fig. 9. The
interfacial profile at �c� t=4.49�10−3 is smooth; however,
two discontinuities in the neighborhood of ±� /2 appear in
the curvature profile. After a few time steps of this critical
time, the curvature of the vortex sheet diverges and the com-
putations break down. The counterpart for A=1.0 at t=3.62
�10−3 is shown in Fig. 10. Sharp discontinuities as found in
Fig. 9�d� are not observed in the curvature profile for this
Atwood number; in spite of that, the Fourier coefficient fits
the −5/2 line �see Fig. 8�c��. Generally, the height of discon-
tinuities in curvature profiles is lower for higher Atwood
numbers.

In Fig. 11 we show the sheet strength � for several times,
where the solid lines �a� and �b� depict the critical sheet
strength ��
 , tc� for the Atwood numbers. We see that the
sheet strength forms two cusps at critical time tc=4.49
�10−3 and t=3.62�10−3 for A=0.155 and A=1.0, respec-
tively. The existence of cusps in � suggests that the sheet

strength has the form of �
�
��� in the neighborhood of
cusp points for some ��1 as t→ tc, as analogous to the KH
instability case.

When one singularity is formed at the critical time, the
other physical quantities should also have some singularities.
On the contrary, if a physical quantity does not have singular
form at the critical time tc, neither have the other quantities.
It seems that the curvature profile for A=1 suggests that the
singularity formations do not occur at this Atwood number,
even though the Fourier spectrum fits the −5/2 line and the
sheet strength has cuspidal form at the time.

FIG. 12. Critical time tc in the RM instability for various At-
wood numbers.

FIG. 10. Interfacial profile and the curvature for A=1 at t
=3.62�10−3.

FIG. 11. Sheet strength � in the RM instability at �=0 for A=�a�
0.155 and �b� 1.0, the dashed, dashed-dotted, and solid lines depict
t=2.80�10−3 , t=4.00�10−3, and t=4.49�10−3 in �a�, while they
depict t=2.40�10−3 , t=3.20�10−3, and t=3.62�10−3 in �b�,
respectively.
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Dependence of the critical time tc on various Atwood
numbers is depicted in Fig. 12. The critical time tc increases
from A=1 to approximately A=0.08 and it rapidly decreases
with the decrease of the Atwood number for A0.08, espe-
cially for 0	A0.05. The dependence of critical time tc on
Atwood numbers in the RM instability is considerably dif-
ferent from that in the RT instability, which will be stated in
the next section �see Fig. 18�.

V. CORE STRENGTH AND SINGULARITY FORMATIONS
IN RAYLEIGH-TAYLOR INSTABILITY

In this section we present corresponding results to Secs.
III and IV for the RT instability for the purpose of compari-
son with the RM instability. Detailed discussions for interfa-
cial profiles and the growth rate of a bubble and spike in the
RT instability are found in Refs. �29,32�; therefore, we only
briefly describe that here. In order to investigate the RT in-
stability, we add the gravity term to the Bernoulli equation
�2�,

d�

dt
= − 2A

d�

dt
+ Aq · q −

A − 2�

4
� · � + �A� · q − 2Agy ,

which leads to

�t = −
2A

s


�X
Ut + Y
Vt� −
�1 − �A��

s

2 �X
U
 + Y
V
�

−
A − �

4s


��2�
 − 2Ag
y


s


, �12�

instead of Eq. �6�, where g is the gravitational acceleration.
By solving Eq. �4� coupled with Eq. �12�, we can determine
motion of a vortex sheet in the RT instability.

We normalize the gravitational acceleration g→g / �kvlin
2 �

so that it becomes dimensionless. The initial configurations
of the interfacial profile Z�
 ,0� and the vorticity ��
 ,0� in
the RT instability are given as

Z�
,0� = 
 + ia0 cos 
 , ��
,0� = 0, �13�

where the normalized gravitational acceleration g=−1
throughout this section, in which the minus sign implies that
gravity acts vertically upwards, i.e., the fluid in the upper
side across the interface is lighter than the lower one.

A. Vortex core strength in Rayleigh-Taylor instability

In Fig. 13, profiles of an interface with different Atwood
numbers A=0.5 and A=0.8 are shown. The time step �t is
taken that �t=0.001 over 0	 t	5 for both Atwood num-
bers, while �t=0.0002 over 5 t	7 and 5 t	6 for A
=0.5 and A=0.8, respectively, where the grid redistribution
is performed every four and five time steps for the intervals
0	 t	5 and 5 t	7�6� at A=0.5 �0.8�, respectively. The
profiles are similar to those for the RM instability in Fig. 3
for each Atwood number. Generally, final profiles in the
computation in the RT instability are very similar to those in
the RM instability at the same Atwood numbers in spite of
the difference of their growth rates.

Temporal evolution of the maximum strength, i.e., the
sheet strength of a vortex core in −�	
	0 is shown in Fig.
14. The properties that the maximum strength �m irregularly
oscillates for relatively low Atwood numbers and the oscil-
lation gradually disappears as the Atwood number increases
are also preserved for the RT instability, however, the abso-
lute values of the core strength are larger for higher Atwood
numbers, contrary to the RM instability �see Fig. 7�. This
tendency suggests that the tightness of the roll-up does not
necessarily indicate that the sheet strength of a core region is
large. Note that the absolute values of core strength in the RT
instability finally become larger than the counterparts in the
RM instability for relatively higher Atwood numbers, in spite
of the fact that the initial sheet strength ��
 ,0�=0 in the RT
instability �see A=0.5 and A=0.8 lines in Figs. 7 and 14�.

FIG. 13. Profiles of an interface in the RT instability for �a� A
=0.5 at t=7 and �b� A=0.8 at t=6.
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B. Singularity formations in Rayleigh-Taylor instability

For the RT instability, there are some theoretical predic-
tions for singularity formations as stated in Sec. I �28,34�.
Baker et al. �28� extended the Lagrangian parameter 
 to a
complex valued variable and examined the analyticities of
solutions Z and � to Eqs. �3� and �12� for �=−A, in which
they obtained the result that the curvature singularity can
occur at a finite time t= tc for A�1. For A=1, they predict
that the singularity will not appear in finite time. Tanveer
�34� also investigated the singularity formation in the RT
instability for A=1 by using the conformal mapping and con-
cluded that singularities are formed in the unphysical plane;
however, it cannot reach the physical plane in finite time.

In this section we examine the singularity formations in
the RT instability numerically and compare to the theoretical
predictions stated above, and at the same time, we clarify the
difference between the singularity formations in the RM in-
stability. We set that all numerical parameters and numerical
methods including the tolerance level in the iteration are the
same as those for calculations of singularity formations for
the RM instability performed in Sec. IV excluding the time
step. The time step is taken that �t=1.0�10−4 throughout
this section. Initial configurations are given by Eq. �13�.

In Fig. 15 we show amplitudes of the Fourier coefficients

�Ĉm�t�� versus mode number m, where dashed lines in �a� and
�b� in the figure have slope −5/2. The spectra approach to
the −5/2 lines as time t approaches critical time tc=0.4640
for A=0.155 and tc=0.1684 for A=1.0, where critical time tc
is defined in a similar manner as Eq. �11� in Sec. IV. The
Fourier spectra in the RT instability also fit to Moore’s −5/2
power law for various Atwood numbers, which is also pre-
dicted by Baker et al. for A1 �28�.

Interfacial profiles and curvatures at tc=0.4640 for A
=0.155 and tc=0.1684 for A=1.0 are shown in Fig. 16. The
discontinuities in the curvature profile �d� for A=1.0 are
much weaker than those in �b� for A=0.155. Analogous to
the RM instability case, the height of discontinuities in cur-
vature profiles for the RT instability is also lower for higher
Atwood numbers. The vague discontinuities in the curvature
profile for A=1.0 may suggest that the singularity formation

does not occur in finite time for this Atwood number, as
predicted by Baker et al. �28� and Tanveer �34�.

Figure 17 shows the sheet strength � up to critical time tc,
where solid lines �a� and �b� depict the critical sheet strength
��
 , tc� for the Atwood number. Unlike the RM instability
case �see Fig. 11�, the amplitude of the cuspidal form for the
RT instability is larger for higher Atwood numbers. This may
be related to the fact that the strength of a vortex core for
��0 is larger for higher Atwood numbers �see Fig. 14�.

Dependence of the critical time tc on the Atwood numbers
is depicted in Fig. 18, where the dashed line and squares
denote the theoretical prediction by Baker et al. �28� and our
numerical computations, respectively. When A�0, the criti-
cal time tc in the RT instability is estimated by Baker et al.
�28� as

tc =
C̃

�Ag�1/2 , �14�

where the constant C̃ generally depends upon the initial con-
ditions in the computation. Our numerical computations sup-
port this theoretical result, although it is unclear whether the
curvature singularity occurs or not for A�0.9 as found in
Fig. 16�d�. Both Baker et al. �28� and Tanveer �34� predict
that some singularity exists in the complex, i.e., unphysical
plane, however, it will never reach the real axis, i.e., physical

FIG. 14. Temporal evolutions of core strength �m in the RT
instability, where solid, dashed-dotted, and dashed lines depict A
=0.155, A=0.5, and A=0.8, respectively.

FIG. 15. Log-log plots of Fourier coefficients for A=�a� 0.155
and �b� 1.0, where plotted time is t=0.4520, 0.4560, 0.4580, 0.4600,
0.4620, and 0.4640 in �a� and 0.1520, 0.1560, 0.1600, 0.1640,
0.1670, and 0.1684 in �b�, respectively. The dashed line in the figure
has slope −5/2.
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plane. It is not easy to verify this prediction for A=1 by
numerical computations as pointed out in Ref. �28�.

VI. DISCUSSIONS AND CONCLUSION

We have investigated the behavior of a vortex core and
the singularity formations in the RM instability with the
Birkhoff-Rott equation coupled with the evolution equation
for the sheet strength. When the Atwood number is finite, the
numerical computations in order to examine the roll-ups be-
come unstable, especially for higher Atwood numbers, due to
the clustering of grid points. In case that we do not perform
the rearrangement of grid points such that they are placed
equidistantly, the breakdown of computations is caused at
relatively early stage of the roll-ups even though A=0.155 in
both the RM and RT instabilities.

The trajectory of a vortex core in the RT instability is
similar to the one found in Fig. 6 for the RM instability for
the corresponding Atwood number including the range over
which the vortex core moves. From this result, including the
interfacial profiles and the behavior of the maximum sheet
strength found in Figs. 7 and 14, we can see that both insta-
bilities have similar properties as vortex sheets, at least when
��0.

For the singularity formations, we have numerically con-
firmed that the Fourier amplitude Ĉm for Zm=Xm+ iYm obeys
Moore’s −5/2 power law for various Atwood numbers over
0	A	1 for both RM and RT instabilities, although the re-
sults for higher Atwood numbers, especially for A�0.9, may

FIG. 16. Interfacial profiles and curvatures at t=0.4640 for A=0.155 ��a� and �b�� and at t=0.1684 for A=1.0 ��c� and �d��, where �b� and
�d� are curvature profiles of the interfacial profiles �a� and �c�, respectively.

FIG. 17. Sheet strength � in the RT instability at �=0 for A=�a�
0.155 and �b� 1.0, the solid, dashed-dotted, and dashed lines depict
t=0.4640, 0.4460, and 0.4000 in �a�, while t=0.1684, 0.1520, and
0.1300 in �b�, respectively.
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not necessarily lead to the formation of the curvature singu-
larity. For the RM instability, this is the first work that has
shown that the Fourier spectra of the amplitude of the inter-
face fit Moore’s −5/2 power law.

The cuspidal formations in the sheet strength � appear for
all Atwood numbers including A=1 for both RM and RT
instabilities, however, the curvature singularities are hardly
observed for higher Atwood numbers, especially for A�0.9
for both RM and RT instabilities. When the singularity for-
mations occur, all physical quantities should be singular at
that time. It seems that the vague discontinuities in the cur-
vature profiles in Figs. 10�b� and 16�d� suggest that the sin-
gularity formations do not occur for A=1 for both RM and
RT instabilities.

We have investigated singularity formations for �=−A in
Secs. IV and V B, however, other choices for the parameter
� are also possible. Since � is an artificial and nonphysical
parameter, the generic nature of singularities should not de-
pend on the choices of �. For several �, we confirmed this
consideration numerically for both RM and RT instabilities,
i.e., the critical time tc for the Atwood number, the profiles of
the curvature, and the sheet strength at the critical time are
not affected by the choice of �.

As we see from Figs. 12 and 18, the most remarkable
difference between the RM and RT instabilities for singular-
ity formations is in the dependence of critical time tc on the
Atwood numbers. As for the RM instability, the theoretical
estimate of tc is an open problem that needs further investi-
gation in the future.
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APPENDIX

In this appendix we present numerical methods in order to
solve the governing equations, Eqs. �4� and �6�. Discretized
equations to Eq. �5� are given as

Uj = −
h

4�
	

cm=0

cm�j

N−1
sinh�Y j − Ym��ms
,m

cosh�Y j − Ym� − cos�Xj − Xm� + �2 ,

Vj =
h

4�
	

cm=0

cm�j

N−1
sin�Xj − Xm��ms
,m

cosh�Y j − Ym� − cos�Xj − Xm� + �2 , �A1�

in which Xj �X�
 j� , Y j �Y�
 j�, and � j ���
 j� are expanded
into discrete Fourier series

Xj = 
 j + 	
m=−M

M

X̂meim
j , Y j = 	
m=−M

M

Ŷmeim
j ,

� j = 	
m=−M

M

�̂meim
j �j = 0,…,N − 1� , �A2�

with the derivatives

X
,m = 1 + 	
m=−M

M

imX̂meim
j ,

Y
,m = 	
m=−M

M

imŶmeim
j ,

�
,m = 	
m=−M

M

im�̂meim
j , �A3�

where X
,m= ��X /�
�m and so on. Note that the derivatives
�A3� do not involve errors which necessarily arise in deriva-
tive representations by usual difference approximations.

When we perform numerical computations, we take the
number of grid points N in 
 j =2�j /N �j=0,… ,N−1� with

N=2� as at least N=4M +1 for the mode number M and
make a zero-padded zone in order to remove the aliasing by
convolutions that occur from nonlinear terms in Eqs. �4� and
�6�, i.e., we set

X̂m = 0, Ŷm = 0, �̂m = 0 �m = M + 1,…,N/2� .

How many zero values are needed in removing of the
aliasing is usually determined from the highest order of non-
linear terms in equations as found in the estimate of “3/2
rule,” i.e., N�3M +1 for the Burgers equation in spectral
methods or the collocation method �45�. Here, the order can-
not be determined clearly because of the existence of the
term s
 in denominators in Eqs. �4� and �6�. However, the
contribution to higher order frequency components due to
this term is small compared to those of numerators, espe-
cially the one from the last term ��2�
 on the right-hand side
of Eq. �6�, which causes a shocklike structure as found in the
solution of the Burgers equation. In our computations, the
cutoff was incomplete for the grid number N such that N
	3M +1. Taking these into account, we take N=4M +1 as
the value of the least cutoff frequency here.

As pointed out by Kerr �29� and Sohn �32�, point vortices,
i.e., the grid points on the interface, tend to make a cluster

FIG. 18. Critical time �Atc in the RT instability for various
Atwood numbers, where squares denote our numerical calculations,
while the dashed line gives the theoretical prediction by Baker et al.
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around a bubble when the Atwood number is high, which is
caused by the fact that the velocity difference between a
bubble and spike becomes large for higher Atwood numbers.
As a result of that, grid points around a spike decrease and
the calculation fails due to numerical instabilities. In order to
avoid that, we use a grid redistribution method developed by
Baker et al. �25,46� so that grid points are arranged equidis-
tantly. This method is analogous to the node spreading pre-
sented by Kerr so as to obtain equally located grid points
�29�, however, the accuracy in the grid redistribution method
is higher than his method and we can take more grid points.
The grid redistribution method is as follows. Now we have a
representation for the interface (X�
 , t� ,Y�
 , t�) with equally
spaced Lagrangian markers 
 at a time t. Then we seek a new
mapping from �0,2�� onto itself, 
→p, such that

p =
1

L
�

0




s
�
��d
�, �A4�

in which s
=�X

2+Y


2 and L is the whole length of the inter-
face at the time t,

L =
1

2�
�

0

2�

s
�
��d
�. �A5�

Since we want to evenly space grid points p=mh �m
=0,… ,N�, where h=2� /N ,N, the number of grid points, we
seek the following sequence:

mh =
1

L
�

0


̄m
s
�
��d
� �m = 0,…,N� . �A6�

Note that 
̄m �m=0,… ,N� with 
̄0=
0 and 
̄N=
N in Eq.
�A6� mapped to mh in p is not equally divided 
m=2�m /N
but a new position in 
 which is not necessarily evenly
spaced. In order to find these new parametrizations succes-
sively, Newton’s method is used. Integrals in Eqs. �A4� and
�A5� are evaluated by the Fourier series of the integrand.

Once new marker 
̄m is given, evenly spaced new position
(X�
̄m , t� ,Y�
̄m , t�) and the strength ��
̄m , t� are determined

by cubic splines using 
m , 
̄m (X�
m , t� ,Y�
m , t�), and
��
m , t�. Thus, the redistribution of grid points at a time t is
completed. With these new dependent variables, new veloci-
ties Xt�
̄m , t� , Yt�
̄m , t�, and �t�
̄m , t� are evaluated at time t,
then we can regard the discrete variable 
 j in the Fourier
series Xj − 
̄ j , Y j , � j as the ones in the mapped space p,
where the points are distributed with equal interval h. This
redistribution is performed every few time steps when we
calculate the roll-up of the interface in Secs. III and V A.

For the calculation of the Cauchy integral in Eqs. �4� and
�6�, we adopt the trapezoidal rule when ��0, while the al-
ternate point quadrature method by Sidi and Israeli �22� is
used for calculations of �=0. In this quadrature method, the
discretizations of Eq. �5� are given as follows:

Uj = −
2h

4�
	
m=0

j+m:odd

N−1
sinh�Y j − Ym��ms
,m

cosh�Y j − Ym� − cos�Xj − Xm�
,

Vj =
2h

4�
	
m=0

j+m:odd

N−1
sin�Xj − Xm��ms
,m

cosh�Y j − Ym� − cos�Xj − Xm�
, �A7�

where the summation is taken from nearest points to far
points in the order in opposite sides of a singular point j
=m. This quadrature method has been adopted for computa-
tions for singularity formations in a vortex sheet in the KH
instability �39,40�. Here, we use this method in order to solve
the Fredholm integral equation Eq. �6� in addition to the
calculation of the Cauchy integral in Eq. �3� when we exam-
ine singularity formations in RM and RT instabilities in Secs.
IV and V B. We add that when we use this quadrature
method, the iteration must be performed so as not to change
the order of rows and columns in the matrix which appears in
the integral equation.
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